

TBCC Fan Stage Operability and Performance

Hypersonic TBCC propulsion - Over /under Configuration

Turbine Based propulsion Mach 0-4+

NASA Fundamental Aeronautics Program 2007 Annual Meeting

October 31st 2007

Dr. Kenneth L. Suder

API Propulsion Technology Integration
Hypersonics Project

216-433-5899 Kenneth.L.Suder@nasa.gov

Fan Rotor Blisk

Outlet Guide Vane

ACKNOWLEDGEMENTS

• The TBCC Fan Stage Design and initial testing was a collaborative NASA / General Electric (GE) effort. The following have made major contributions to the work presented herein:

Mechanical Design & Aeromechanics Analysis

- Mark Mielke, GE
- Doug Washburn, GE
- Scott Thorp, NASA
- John Jones, NASA Contractor
- Greg Lung, NASA Contractor

Aerodynamic Design & Aerodynamics Analysis

- NASA
- Peter Wood, GE
- Dave Clark, GE
- Hyoun-Woo Shin, GE
- Sue Prahst, NASA Contractor
- Aamir Shabbir, Univ of Toledo
- Ken Suder, NASA

W8 Facility Installation & Operation

- Tom Jett, NASA
- Rick Brokopp, NASA
- Ashlie Flegel, NASA Contractor
- John Dearmon, NASA Contractor
- Helmi-Abulaban, NASA Contractor
- Bruce Wright, NASA

TBCC Fan Stage Operability and Performance

- Background
 - Relevancy /Benefits of TBCC Propulsion
 - * TBCC Fan Technology Challenges
 - Overview of NASA TBCC Plan
- Objectives / Approach
- Fan Stage Design
- Test Facility / Instrumentation
- Results
 - Aeromechanic Checkout
 - **❖ Overall Performance and Comparison w/ CFD**
 - **❖ Sampling of Data**
- Summary / Concluding Remarks

NASA Mach 4+ Capable TBCC Engine Concept

Fan Rotor Blisk

Outlet Guide Vane

TBCC Propulsion Benefits: Efficiency, Safety, Reliability

- High effective specific impulse, I_{eff}
- Horizontal takeoff and landing enhances launch, flight and ground operability
 - ✓ Benign ascent abort/engine out
- Large structural mass fraction providing large margins
 - Design for life
 - Design for safety
- Reduced sensitivity to weight growth
 - Reduced design/development risk
 - Reduced user constraints
- High payload fraction

TBCC BENEFITS:

- Quick Turn Around Time (Aircraft Like Operations)
- Re- useable > 1000 missions
- Versatile Usage + Launch & Landing Sites
- Low Maintenance, High Durability, Performance Margin

 $I_{SP} = Thrust/Pound per second of propellant (fuel) flow rate$

Two Enabling Technologies for Reusable Hypersonic Applications

<u>High Mach Turbine Tech Challenges:</u>

- Provide thrust margin over entire range (0<M<4+)</p>
 - Light Weight High Temperature Materials
 - Thermal Management
 - High Temperature Bearings and Seals
 - Highly Loaded Turbomachinery
 - Propulsion/Airframe Integration
 - Cocooning and Relight

Scramjet Tech Challenges:

- Reduce Scramjet Ignition Mach Speed (M5 M3)
- Provide transition speed margin (3<M<4)</p>
 - Variable Geometry
 - Advanced Combustion Schemes
 - Light Weight High Temperature Materials
 - Thermal Management
 - High Temperature Seals
 - Propulsion/Airframe Integration

Required TURBINE Improvements over SOA:

- ✓ 2-3X Thrust / Weight
- √ 4-8X Durability MTBO
- ✓ 20-25% Reduction in Fuel Burn
- ✓ Increased Mach Capability
- ✓ Improved Range
- Conventional Fuel / Lubricants

Turbine Based Combined Cycle Engine (CCE) FAP 2007-11 Propulsion Roadmap - Integrates In-House / OGA's / NRA's

TBCC Fan Stage is Integral to CCE effort and is used to assess impact of TBCC inlet distortion on fan stage performance and operability.

Mach 4 + Capable Variable Cycle Engine Operation

Variable Cycle Engine maximizes thrust over broad operating range:

- Conventional turbojet at low BPR, low Mach
- Converts to Ram burner at high BPR, high Mach
- Enables Mach 4+ using existing materials

Notional Engine Temperatures

High Mach Turbine Engines Challenges Augmented by Wider Operating Range and excess Temperatures relative to SOA Engines

TBCC Fan Stage Operability and Performance

Objective of Fan Stage Research:

Verify SOA design and analysis tools. Characterize a TBCC engine fan stage aerodynamic and aeromechanic performance and stability limits over a wide operating range including power-on and hypersonic-unique windmill operation.

SOA Design & Analysis Tools used to Enable SLS to Mach 4 Range of Operation
(10x variation in bypass ratio, full power to windmill operation,
variations: 8x in rotor speed, 8x inlet pressure, 3x inlet temperature)

TBCC Fan Stage Operability and Performance

Approach:

- Perform aerodynamic and aero-mechanical scaling of a relevant SOA Mach 4 turbine engine fan stage and incorporate facility interface hardware for sub-scale testing in the NASA high speed compressor facility.
- Predict performance and operability prior to test using SOA analysis tools.
- Map fan stage performance and measure stall line stability boundary over wide range of engine operation and compare to pre-test predictions.
- Measure Fan Aeromechanics: identify vibration and flutter boundaries that adversely impact engine operation. Assess ability of SOA tools to predict flutter.
- Investigate inlet / engine interactions by incorporating inlet distortions and quantify the SOA tool(s) and their ability to predict performance and operability (with distorted inlet inflow).
- Utilize test article to understand physics and improve models required to predict off-design performance and operability

Fan Stage Design

Fan Stage Design Parameters

Fan Rotor Tip Speed	1660 ft/s
Fan Rotor Design Speed	17280 RPM
Radius Ratio at LE	0.43
Average Aspect Ratio	1.12
Average Solidity	2.2
Specific Flow	38.0
Design Flow Rate	85.2 lbm/s
Stage Pressure Ratio	2.47
Stage Adiabatic Efficiency	0.85
Stall Margin	20%

a) Advanced technology forward swept fan b) OGV bowed and leaned at the hub to turn air Fan Stage = Rotor (25) + OGV (48) + Strut (6)**Bypass Flow** INLET **FLOW Core Flow**

Design Features:

- ➤ Liner inserts to evaluate sensitivity to clearance, endwall flow control such as casing treatments.
- Independent throttle valves for bypass and core flow paths to assess sensitivity to bypass ratio.
- Capability to perform parametrics on 1) the OGV setting angle, 2) inlet boundary layer thickness, and 3) inlet distortion.
- ➤ Steady state conventional as well as high response instrumentation to assess ability of SOA tools to predict performance and operability.

CFD tools utilized in Fan Stage Design to Accommodate Large Operating Range Requirements

Meridional views of the axial velocity distribution at 5%, 50%, and 95% OGV pitch for the final OGV design.

Final OGV Design Balances Competing Requirements over the Entire Flight Regime

Performance at Take-off

Pass the Flow with minimal losses at High Mach Flight

TBCC High Mach FAN Rig Test - Facility

Mechanical:

- Shaft power, max: 7000 HP (electric motor)
- Rotational speed, max: 21240 RPM
 - 5.9:1 Gear Ratio
- Approximately 4:1 Pressure Ratio capability
 - Exit temperature limit, 400F
- Air flow, max: 100 lbm/second
- Full Bi-directional rotation capability
- 20 to 22 inch diameter face
- Common shaft attachment scheme with W-7 Facility & the 9X15 LSWT

Rig Health Monitoring System:

- · 3500 Bentley Nevada rig health system
 - data acquisition/analysis/archival
 - Proximity sensors
 - Accelerometers
 - 100 channel slip ring

Steady State Instrumentation (ESCORT D):

- 256 channels of analog data inputs.
- 320 pressure measurements
- 16 axis probe actuator control system

Unique Facility Capabilities Utilized to Obtain Fan Windmilling DATA

Fan Stage Test Section Schematic

Instrumentation

Instrumentation

Instrumentation

TBCC Fan Stage: Aeromechanic Results - Smooth Wall Configuration

Aeromechanic Instrumentation:

- Dynamic Strain Gages (Rotor: 21; OGV: 20; Inlet Rakes: 12)
- Light Probes at Rotor Leading Edge (10) & Trailing Edge (10)
- Dynamic Tip Clearance Measurements (4 @ 50% chord)

Aeromechanic Results:

- Speed Avoidance Zones for the Smooth Wall Clean Inlet Flow Condition:
 - Near Stall from 51-67% Speed due to Non-synchronous vibration /excitation of the Rotor's First Torsion mode (1T NSV)
 - 2. 100% Speed Near Stall (Hum not identified)

GE57 fan rig – fan blisk thin-film strain gages

70%

101%

25% 36% 50%

60%

Low Op-Line stall line (calc)

Fan Stage Cleared for 15-100% Speed Operation **Except** at Identified Speed Avoidance Zones

Pre-Test CFD Compared to DATA

Pre-Test CFD does NOT predict Range of Operation @ High Speed

Pre-Test CFD Compared to DATA

Efficiency Discrepancy Between Pre-Test CFD and Rake Measurements

Instrumentation - OGV Blade Surface Static Pressure

OGV surface statics indicate blade incidence, blade loading,& separations

Sensitivity to OGV Setting Angle: 37% Speed

Rotor Tip Static Pressure Measurements: 100% Speed

Concluding Remarks

- A SOA Mach 4 turbine engine fan stage was designed and scaled (0.57 linear) for testing in the NASA W8 high speed compressor facility.
- CFD was utilized in the design process and simulations were performed to predict performance and operability prior to test.
- Aerodynamic fan stage performance characteristics were acquired at 15%, 36%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, and 100% of design rotor speed. Measurements are being compared to Pre-test CFD. Results to date include:
 - . Good agreement at the design point
 - Discrepancy in efficiency values over the speed range
 - ❖ Pre-Test CFD does NOT predict Range of Operation @ High Speed
- Future Efforts include in depth analysis of CFD and its comparison to measurement, specifically:
 - Rotor endwall flow structure using steady and high response pressure measurements.
 - ❖ OGV blade loading using blade surface static measurements at 10%, 15%, 25% and 45% span.
 - Stage performance based on detailed aerodynamic probe surveys (radial and circumferential).
- Additional fan stage testing to assess sensitivity (both CFD and measurement) of performance and operability to:
 - Endwall tip clearance

October 30 - November 1, 2007

- * Endwall flow control including casing treatment
- ❖ Inlet flow distortions (radial, circumferential, and TBCC inlet)

